程春田

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源. 水利水电工程. 电力系统及其自动化. 计算机应用技术

联系方式:ctcheng@dlut.edu.cn

电子邮箱:ctcheng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Long-term prediction of discharges in manwan reservoir using artificial neural network models

点击次数:

论文类型:会议论文

发表时间:2005-05-30

收录刊物:EI

卷号:3498

期号:III

页面范围:1040-1045

摘要:Several artificial neural network (ANN) models with a feed-forward, back-propagation network structure and various training algorithms, are developed to forecast daily and monthly river flow discharges in Manwan Reservoir. In order to test the applicability of these models, they are compared with a conventional time series flow prediction model. Results indicate that the ANN models provide better accuracy in forecasting river flow than does the auto-regression time series model. In particular, the scaled conjugate gradient algorithm furnishes the highest correlation coefficient and the smallest root mean square error. This ANN model is finally employed in the advanced water resource project of Yunnan Power Group. © Springer-Verlag Berlin Heidelberg 2005.