Hits:
Indexed by:Journal Papers
Date of Publication:2020-07-15
Journal:ENERGY
Included Journals:SCIE
Volume:203
ISSN No.:0360-5442
Key Words:Energy management; Monte Carlo simulation; Plug-in hybrid electric bus; Pontryagin's minimum principle; Taguchi robust design
Abstract:This paper proposes a robust energy management for plug-in hybrid electric buses (PHEBs) considering the uncertainties of driving cycles and vehicle mass. The goal is to improve the fuel economy of PHEB while weakening the sensitivity of Pontryagin's minimum principle (PMP)-based energy management to driving conditions. Considering that the PMP can be controlled by constant, a robust co-state sequence of PMP is designed based on the Taguchi robust design, where the quality characteristic of fuel consumption is taken as smaller-the-better characteristic. Taking the sampled noise factors composed of driving cycles and stochastic vehicle mass into account, a reliable verification structure is constructed to verify the robustness of designed co-state sequence based on the Monte Carlo simulation. Combining the robust co-state sequence and charge sustaining control mode, a robust PMP control strategy is proposed for the optimal control of PHEB and the over-discharge protection of battery. The simulation results demonstrate that the proposed energy management strategy is effective, and is robust against the uncertainties. Compared with the rule-based energy management, the fuel economy can be averagely improved by 29.32%. (C) 2020 Elsevier Ltd. All rights reserved.