教授 博士生导师 硕士生导师
性别: 女
毕业院校: 大连理工大学
学位: 博士
所在单位: 物理学院
学科: 等离子体物理
办公地点: 大连理工大学 科技园大厦C座 519
电子邮箱: yrzhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2017-05-01
发表刊物: PLASMA SOURCES SCIENCE & TECHNOLOGY
收录刊物: SCIE、EI
卷号: 26
期号: 5
ISSN号: 0963-0252
关键字: mesoporous catalyst; particle-in-cell; streamer; dielectric barrier discharge
摘要: The formation process of a microdischarge (MD) in both ae m-and nm-sized catalyst pores is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model. A parallel-plate dielectric barrier discharge configuration in filamentary mode is considered in ambient air. The discharge is powered by a high voltage pulse. Our calculations reveal that a streamer can penetrate into the surface features of a porous catalyst and MDs can be formed inside both mu m-and nm-sized pores, yielding ionization inside the pore. For the mu m-sized pores, the ionization mainly occurs inside the pore, while for the nm-sized pores the ionization is strongest near and inside the pore. Thus, enhanced discharges near and inside the mesoporous catalyst are observed. Indeed, the maximum values of the electric field, ionization rate and electron density occur near and inside the pore. The maximum electric field and electron density inside the pore first increase when the pore size rises from 4 nm to 10 nm, and then they decrease for the 100 nm pore, due to a more pronounced surface discharge for the smaller pores. However, the ionization rate is highest for the 100 nm pore due to the largest effective ionization region.