教授 博士生导师 硕士生导师
性别: 女
毕业院校: 大连理工大学
学位: 博士
所在单位: 物理学院
学科: 等离子体物理
办公地点: 大连理工大学 科技园大厦C座 519
电子邮箱: yrzhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2019-07-17
发表刊物: JOURNAL OF PHYSICS D-APPLIED PHYSICS
收录刊物: SCIE、EI
卷号: 52
期号: 29
ISSN号: 0022-3727
关键字: inductively coupled plasma; ion energy distribution; ion angular distribution; hybrid simulation; experimental validation
摘要: A hybrid model, which consists of a fluid module, a sheath module and an ion Monte Carlo module, is employed to investigate the dependence of ion energy and angular distributions (IEDs and IADs) on the inductively coupled plasma (ICP) power, pressure, gas ratio, bias power and bias frequency in Ar/O-2 discharges. The results indicate that the bimodal distribution appears as bias power increases or bias frequency decreases. Moreover, the low and high energy peaks of IEDs move to higher energy with the rise of bias power and O-2 content. Whereas, an opposite tendency is observed with the increase of ICP power and pressure. For IADs, it is clear that a larger percentage of ions incident on the electrode have a smaller deflection angle by increasing bias power or decreasing pressure, and a similar evolution is observed with the decline of bias frequency. Besides, the better collimation of ions is obtained at larger O-2 concentration, but ICP power only has little influence on IADs. In order to validate the model, a comparison between the simulated IEDs and those measured by a retarding field energy analyzer has been done, and shows a good agreement. The results obtained in this work could help us to gain more insight into the dependence of IEDs and IADs on the discharge parameters, which is of significant importance in the improvement of the etching rate and anisotropy.