location: Current position: Home >> Scientific Research >> Paper Publications

Robust Object Tracking via Sparse Collaborative Appearance Model

Hits:

Indexed by:期刊论文

Date of Publication:2014-05-01

Journal:IEEE TRANSACTIONS ON IMAGE PROCESSING

Included Journals:SCIE、EI、ESI高被引论文、Scopus

Volume:23

Issue:5

Page Number:2356-2368

ISSN No.:1057-7149

Key Words:Object tracking; collaborative model; sparse representation; feature selection; occlusion handling

Abstract:In this paper, we propose a robust object tracking algorithm based on a sparse collaborative model that exploits both holistic templates and local representations to account for drastic appearance changes. Within the proposed collaborative appearance model, we develop a sparse discriminative classifier (SDC) and sparse generative model (SGM) for object tracking. In the SDC module, we present a classifier that separates the foreground object from the background based on holistic templates. In the SGM module, we propose a histogram-based method that takes the spatial information of each local patch into consideration. The update scheme considers both the most recent observations and original templates, thereby enabling the proposed algorithm to deal with appearance changes effectively and alleviate the tracking drift problem. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.

Pre One:Visual Tracking via Probability Continuous Outlier Model

Next One:Robust Superpixel Tracking