Hits:
Indexed by:期刊论文
Date of Publication:2013-05-01
Journal:IEEE TRANSACTIONS ON IMAGE PROCESSING
Included Journals:SCIE、PubMed、ESI高被引论文
Volume:22
Issue:5
Page Number:1689-1698
ISSN No.:1057-7149
Key Words:Laplacian sparse subspace clustering; saliency map; visual saliency
Abstract:Visual saliency detection is a challenging problem in computer vision, but one of great importance and numerous applications. In this paper, we propose a novel model for bottom-up saliency within the Bayesian framework by exploiting low and mid level cues. In contrast to most existing methods that operate directly on low level cues, we propose an algorithm in which a coarse saliency region is first obtained via a convex hull of interest points. We also analyze the saliency information with mid level visual cues via superpixels. We present a Laplacian sparse subspace clustering method to group superpixels with local features, and analyze the results with respect to the coarse saliency region to compute the prior saliency map. We use the low level visual cues based on the convex hull to compute the observation likelihood, thereby facilitating inference of Bayesian saliency at each pixel. Extensive experiments on a large data set show that our Bayesian saliency model performs favorably against the state-of-the-art algorithms.