李俊峰
-
教授
博士生导师
硕士生导师
- 性别:男
- 毕业院校:北京师范大学
- 学位:博士
- 所在单位:数学科学学院
- 学科:基础数学
- 办公地点:创新园大厦A1128
- 电子邮箱:Junfengli@dlut.edu.cn
访问量:
-
[1] 李俊峰, Zheng, Chuang.Non-homogeneous initial boundary value problems for the biharmonic Schrödinger equation on an interv[J],Annals of Mathematical Sciences and Applications,2024,9(1):3-55
-
[2] Li, Guoliang, 李俊峰.THE BOUNDEDNESS OF THE BILINEAR OSCILLATORY INTEGRAL ALONG A PARABOLA[J],PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY,2024,66(1):54-88
-
[3] Dan LI, 李俊峰.A Carleson Problem for the Boussinesq Operator[J],Acta Mathematica Sinica,English Series,2024,39(01):119-148
-
[4] Li, Dan, 李俊峰.The Pointwise Convergence Along Curve Associated with Boussinesq Operator[J],FRONTIERS OF MATHEMATICS,2024
-
[5] 李俊峰, Yu Haixia.Sharp weak bounds for n-dimensional fractional Hardy operators.[J],中国数学前沿,2022,13(2):449–457
-
[6] 李丹, 李俊峰.On 4-order Schrodinger operator and Beam operator[J],中国数学前沿,2022,14:1197-1211
-
[7] 李俊峰, Liu Peng.Bilinear fractional integral along homogeneous curves.[J],JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS,2022,23(6):1465–1479
-
[8] 李俊峰, Yu, Haixia.BILINEAR HILBERT TRANSFORMS AND (SUB)BILINEAR MAXIMAL FUNCTIONS ALONG CONVEX CURVES[J],PACIFIC JOURNAL OF MATHEMATICS,2022,310(2):375-446
-
[9] 李丹, 李俊峰, 肖杰.AN UPBOUND OF HAUSDORFF’S DIMENSION OF THE DIVERGENCE SET OF THE FRACTIONAL SCHR(O|")DINGER OPERA[J],Acta Mathematica Scientia,2022,41(04):1223-1249
-
[10] Yu, Hai Xia, 李俊峰.Weak (1,1) Boundedness of Oscillatory Singular Integral with Variable Phase[J],Acta Mathematica Sinica,2022,35(11):1741-1759
-
[11] 李俊峰, Yu, Haixia.L-2 boundedness of Hilbert transforms along variable flat curves[J],MATHEMATISCHE ZEITSCHRIFT,2022,298(3-4):1573-1591
-
[12] Chen Wengu, Wei Suqing, 李俊峰.Global well-posedness of the two-dimensional Benjamin equation in the energy space.[J],NONLINEAR ANALYSIS REAL WORLD APPLICATIONS,2022,45:755-788
-
[13] 李俊峰, 李想.2维2次非线性薛定谔方程的整体有界性(英文)[J],数学进展,2021,50(04):496-510
-
[14] Li, Dan, Junfeng, D (reprint author), Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China..On 4-order Schrodinger operator and Beam operator[J],FRONTIERS OF MATHEMATICS IN CHINA,2019,14(6):1197-1211
-
[15] Yu, Hai Xia, Li, Jun Feng, JF (reprint author), Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China..Weak (1,1) Boundedness of Oscillatory Singular Integral with Variable Phase[J],ACTA MATHEMATICA SINICA-ENGLISH SERIES,2019,35(11):1741-1759
-
[16] Chen Wengu, Wei Suqing, Li junfeng.Global well-posedness of the two-dimensional Benjamin equation in the energy space.[J],Nonlinear Anal. Real World Appl.,2019,45:755-788
-
[17] Li junfeng, Yu Haixia.The oscillatory hyper-Hilbert transform associated with plane curves.[J],Canad. Math. Bull.,2018,61(4):802–811
-
[18] Li junfeng, Yu Haixia.Sharp weak bounds for n-dimensional fractional Hardy operators.[J],Front. Math. China,2018,13(2):449–457
-
[19] Herbert Koch, Li junfeng.Global well-posedness and scattering for small data for the three-dimensional Kadomtsev-Petviashvili[J],Comm. Partial Differential Equations,2017,42(6):950–976
-
[20] Li junfeng, Li Xia.Well-posedness for the fifth order KP-II initial data problem in Hs,0(R×T)[J],J. Differential Equations,2017,262(3):2196–2230