• 更多栏目

    秦福文

    • 副教授       硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:物理学院
    • 学科:凝聚态物理
    • 办公地点:科技园c座303-2
    • 联系方式:qfw@dlut.edu.cn
    • 电子邮箱:qfw@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Plasma passivation of near-interface oxide traps and voltage stability in SiC MOS capacitors

    点击次数:

    论文类型:期刊论文

    发表时间:2019-05-14

    发表刊物:JOURNAL OF APPLIED PHYSICS

    收录刊物:SCIE、EI

    卷号:125

    期号:18

    ISSN号:0021-8979

    摘要:Near-interface oxide traps severely affect the voltage stability of silicon carbide metal-oxide-semiconductor devices. In this work, electron cyclotron resonance microwave nitrogen plasma and electron cyclotron resonance microwave nitrogen-hydrogen-mixed plasma were used to passivate near-interface oxide traps in silicon carbide metal-oxide-semiconductor capacitors. An improved low-temperature midgap voltage drift method was proposed to evaluate the voltage stability of silicon carbide metal-oxide-semiconductor capacitors. Results showed that the effect of passivating near-interface oxide traps and voltage stability could be improved by increasing the nitrogen passivation time. However, excessive nitrogen passivation created deep-level interface traps that degraded the interface quality, and a small amount of hydrogen could passivate the deep-level traps produced by the excess nitrogen. As a result, the samples subjected to the passivation process with the nitrogen-hydrogen-mixed plasma had a smaller flat-band voltage drift and more stable carbide metal-oxide-semiconductor capacitors than the samples subjected to nitrogen plasma. However, the excessive introduction of hydrogen also produced additional defects, consequently making the stability of the metal-oxide-semiconductor devices sensitive to the time of the passivation process by nitrogen-hydrogen-mixed plasma. Therefore, the suitable time of mixed plasma passivation is crucial to the improvement of the stability of devices.