教授 博士生导师 硕士生导师
性别: 女
毕业院校: 大连理工大学
学位: 博士
所在单位: 物理学院
学科: 等离子体物理
办公地点: 大连理工大学 科技园大厦C座 519
电子邮箱: yrzhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2015-05-01
发表刊物: PHYSICS OF PLASMAS
收录刊物: SCIE、EI、Scopus
卷号: 22
期号: 5
ISSN号: 1070-664X
摘要: As the wafer size increases, dual frequency (DF) inductively coupled plasma (ICP) sources have been proposed as an effective method to achieve large-area uniform plasma processing. A two-dimensional (2D) self-consistent fluid model, combined with an electromagnetic module, has been employed to investigate the influence of the low frequency (LF) source on the plasma radial uniformity in an argon DF discharge. When the DF antenna current is fixed at 10 A, the bulk plasma density decreases significantly with the LF due to the less efficient heating, and the best radial uniformity is obtained at 3.39 MHz. As the LF decreases to 2.26 MHz, the plasma density is characterized by an edge-high profile, and meanwhile the maximum of the electron temperature appears below the outer two-turn coil. Moreover, the axial ion flux at 3.39 MHz is rather uniform in the center region except at the radial edge of the substrate, where a higher ion flux is observed. When the inner five-turn coil frequency is fixed at 2.26 MHz, the plasma density profiles shift from edge-high over uniform to center-high as the LF coil current increases from 6A to 18 A, and the best plasma uniformity is obtained at 14 A. In addition, the maximum of the electron temperature becomes lower with a second peak appears at the radial position of r = 9 cm at 18A. (C) 2015 AIP Publishing LLC.