庄严
1419

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Vice Dean of School of Control Science and Engineering

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:控制科学与工程学院

学科:模式识别与智能系统. 控制理论与控制工程. 导航、制导与控制. 人工智能

办公地点:大连理工大学 创新园大厦 A611室

联系方式:办公电话:0411-84707581

电子邮箱:zhuang@dlut.edu.cn

扫描关注

论文成果

当前位置: 庄严中文主页 >> 科学研究 >> 论文成果

3-D Laser-Based Multiclass and Multiview Object Detection in Cluttered Indoor Scenes

点击次数:

论文类型:期刊论文

发表时间:2017-01-01

发表刊物:IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

收录刊物:SCIE、EI、Scopus

卷号:28

期号:1

页面范围:177-190

ISSN号:2162-237X

关键字:Imbalanced learning; laser scanning; multiclass and multiview 3-D object detection; multitask learning; sharing features

摘要:This paper investigates the problem of multiclass and multiview 3-D object detection for service robots operating in a cluttered indoor environment. A novel 3-D object detection system using laser point clouds is proposed to deal with cluttered indoor scenes with a fewer and imbalanced training data. Raw 3-D point clouds are first transformed to 2-D bearing angle images to reduce the computational cost, and then jointly trained multiple object detectors are deployed to perform the multiclass and multiview 3-D object detection. The reclassification technique is utilized on each detected low confidence bounding box in the system to reduce false alarms in the detection. The RUS-SMOTEboost algorithm is used to train a group of independent binary classifiers with imbalanced training data. Dense histograms of oriented gradients and local binary pattern features are combined as a feature set for the reclassification task. Based on the dalian university of technology (DUT)-3-D data set taken from various office and household environments, experimental results show the validity and good performance of the proposed method.